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Abstract
In the context of climate change, high-temperature stress poses a significant threat to plant growth and crop productivity.
Due to the rise in global temperature, it is necessary to understand and manage the harmful effects of heat stress (HS)
on plants. Salicylic acid (SA) is a naturally existing phytohormone. It plays an important role in boosting the ability of
plants to withstand different environmental stresses, such as high temperature. This review delves into the various roles
of SA to mitigate the harmful effects of HS in plants. SA, known for its traditional function in plant defense mechanisms
against pathogens, has been identified as a regulator of numerous physiological, biochemical and molecular processes. SA
mitigates high temperature stress (HTS) through diverse mechanisms, encompassing the control of antioxidant systems,
adjustment of heat shock protein (HSPs) expression, preservation of membrane stability and induction of osmoprotectants.
Furthermore, this review discusses the practical applications of SA in agriculture to enhance crop heat tolerance. External
application of SA or SA analogs has exhibited promising results in improving crop yield and quality under HS conditions.
However, the precise mechanisms of SA-mediated thermotolerance in different plant species and genotypes require further
investigation. In conclusion, SA emerges as a vital regulator in the complex network of plant responses to HTS, requires
further exploration of molecular and biochemical mechanisms by which SA improves plant thermotolerance.
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Introduction

Plants confront various environmental challenges through-
out their lifespan. Abiotic stresses such as extreme tempera-
tures, drought, salinity and exposure to toxic metal ions can
significantly affect plant health and performance (Oshun-
sanya et al. 2019). Due to climate change the frequency of
extreme weather events has increased, thereby intensifying
the harmful effects of abiotic stresses on plants (Zhao et al.
2020). Globally, there is a recognition that the increasing
temperature pose a substantial threat to agricultural pro-
ductivity (Myers et al. 2017). The fifth assessment report
of the IPCC projected that the annual daily maximum tem-
perature would increase by around 1–3°C by the middle
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of the 21st century (Intergovernmental Panel on Climate
Change [IPCC] 2014). As the global temperature continues
to increase, it is very important to understand its conse-
quences on agriculture, ecosystems and food security (Mu-
luneh 2021).

High temperatures pose a risk to the photosynthetic ma-
chinery in plants, leading to reduced carbon dioxide uptake
and ultimately diminished crop yields (Mondal et al. 2016).
At elevated temperatures, plants respire more rapidly (Fer-
guson et al. 2021). Although respiration is crucial for energy
production, excessive respiration can deplete the plant’s en-
ergy reserves, resulting in fewer resources available for
growth and reproduction. High temperatures can amplify
water stress in plants by increasing the rate of evapotran-
spiration. This can lead to water loss through transpiration
exceeding the plant’s ability to absorb water from the soil,
resulting in wilting, leaf damage and ultimately dehydra-
tion (Marchin et al. 2022). Elevated temperatures can exert
widespread and adverse impacts on plant health, growth
and reproductive processes (Parthasarathi et al. 2022).

To combat these challenges, certain plants utilize strate-
gies like stomatal closure to reduce water loss and maintain
cellular turgor and hydration. Additionally, plants may ac-
cumulate osmoprotectants like glycine betaine, proline and
soluble sugars. These substances reduce the osmotic po-
tential within cells, allowing the plant to retain water in
adverse conditions (Sihag et al. 2024).

HTS leads to increase in ROS within plant cells (Liu
et al. 2021). These ROS include reactive molecules and
free radicals derived from molecular oxygen, all of these
are known to cause damage to the cell membrane of plants
(Demidchik and Shabala 2017). The increased production
of ROS under HS conditions poses a considerable risk to
cellular components and it disturbs various physiological
processes occurring in plant cells (Ul Hassan et al. 2021).

Fig. 1 Effects of heat stress
on morphology, physiology,
biochemistry and yield of plants

In response to oxidative stress, plant cells activate antiox-
idant defense systems to mitigate the negative effects of
ROS and maintain cellular homeostasis (Dumanović et al.
2021). These defensive mechanisms include enzymes such
as catalase (CAT), peroxidase (POX), ascorbate peroxidase
(APX), superoxide dismutase (SOD), glutathione peroxi-
dase (GPX), and glutathione S-transferase (GST) (Rajput
et al. 2021). Numerous studies have shown that several
high-molecular-weight heat shock proteins (HSPs) exhibit
responses to increased temperature stress. These HSPs safe-
guard cell membranes by stabilizing membrane proteins and
prevent lipid peroxidation (Khan and Shahwar 2020). HSPs
play a crucial role in preserving the thermostability of cell
membrane during HS (Hemantaranjan et al. 2014). Cer-
tain plants may modify the composition of their membrane
lipids, synthesizing more heat-tolerant lipid molecules to
improve membrane stability in response to HTS (Prasert-
thai et al. 2022).

Overall, these physiological processes are interconnected
and collectively enhance a plant’s capacity to tolerate HTS.
The ability to regulate water balance, accumulate protective
solutes, maintain photosynthesis and preserve cell mem-
brane integrity are essential processes that enable plants to
survive and adapt to challenging HS conditions. Figure 1 il-
lustrates the effects of HTS on morphological, biochemical,
physiological and yield parameters in plants. Plant species
and genotypes with greater tolerance to high temperatures
often exhibit enhanced capabilities in these processes.

In response to HS conditions, plants activate a complex
network of interconnected signaling pathways which allow
them to reduce the harmful effects of elevated tempera-
ture (Li et al. 2021). In challenging environments, the co-
ordination between phytohormone signaling pathways and
metabolites becomes essential for regulating plant growth
and development. This cooperation plays a central role in
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sensing and adapting to abiotic stress in plants (Rasool et al.
2018).

Various phytohormones, such as auxin, cytokinins, ab-
scisic acid, gibberellic acid, brassinosteroids, nitric oxide,
salicylic acid and polyamines, play crucial roles in mit-
igating the effects of HS on plant growth and develop-
ment (Lubovská et al. 2014). Phytohormones regulates vital
physiological processes during both normal growth phases
and stress conditions in plants (Fahad et al. 2015). Con-
sequently, considerable attention has been focused on in-
vestigating the external application of phytohormones to
enhance stress tolerance. The literature contains numerous
studies for enhancement of thermotolerance through exter-
nal applications of phytohormones. For example, IAA and
ABA not only initiate signal transduction pathways but also
regulate the growth and quality of Kentucky bluegrass un-
der HS conditions (Li et al. 2014). In Arabidopsis, the non-
protein amino acid β-aminobutyric acid (BABA) has been
found to augment acquired high-temperature tolerance, po-
tentially by modulating the ABA (Zimmerli et al. 2008).
The participation of brassinosteroids in plant responses to
HTS has been observed (Zhang et al. 2013). Ethylene and
cytokinins have been identified as mediators of HS sig-
nals in plants (Sagar et al. 2021). The alleviation of HTS
in plants is significantly facilitated by SA, which triggers
a range of physiological, biochemical and molecular re-
sponses (Kaya et al. 2023). The review extensively exam-
ines various aspects, including the interplay of SA with
the photosynthetic machinery, heat shock proteins, changes
in antioxidants, lipid peroxidation, accumulation of crucial
osmolytes like proline, glycine betaine and the impact on
membrane stability, reproduction, phenology and yield of
plants.

Role of Salicylic Acid in High Temperature
Stress Tolerance

SA, a naturally occurring phytohormone, has traditionally
been associated with plant defense against pathogens. How-
ever, recent research has shown that it also contributes to
enhancing plant thermotolerance (Sangwan et al. 2022). Ex-
ogenous application of SA initiates mechanisms of abiotic
stress tolerance in plants under various stress conditions
(Song et al. 2023). The impact of SA on plants depends on
its dosage, with both low and high concentrations leading
to different results for the same plant species (Wani et al.
2017). The optimal concentration for SA treatment varies
based on parameters such as treatment duration, plant type,
plant age and the specific part of the plant being treated
(Lawlor and Paul 2014). A concise summary of multiple
studies investigating the mitigation of heat stress through
the application of SA is given in Table 1.

Effect of Heat Stress On Membrane Injury
Indices and Its Mitigation Through SA
Application

The application of salicylic acid (SA) has been shown to
enhance membrane stability during heat stress, reducing the
adverse effects associated with ROS production. SA foliar
treatment has been reported to decrease ion leakage and
lipid peroxidation in alfalfa subjected to HTS, suggesting
its role in improving membrane stability under stress condi-
tions (Wassie et al. 2020). In fenugreek seedlings exposed
to a high temperature of 40°C, the application of SA led to
a remarkable reduction in heat injury by 60% compared to
seedlings subjected to heat stress alone (Choudhary et al.
2024). This protective effect of SA is attributed to its ability
to modulate the plant’s antioxidant defense system, which
reduces oxidative stress and maintains cellular homeostasis.
In wheat, SA significantly enhanced growth by decreas-
ing the accumulation of malondialdehyde (MDA), hydro-
gen peroxide (H2O2), and electrolyte leakage (Alsahli et al.
2019). Under HS conditions, plants treated with a foliar
spray of SA exhibited lower levels of MDA, indicating
enhanced membrane integrity. Consequently, these plants
showed better growth compared to those without SA treat-
ment (Younis et al. 2021).

Role of Salicylic Acid in Antioxidant
Metabolism Under High Temperature Stress

Salicylic acid (SA) plays a critical role in enhancing the an-
tioxidant defense mechanisms of plants, particularly under
high-temperature stress (HTS). The external application of
SA has been shown to regulate the activity of antioxidative
enzymes, thereby bolstering a plant’s ability to withstand
abiotic stresses (Parashar et al. 2014). Research indicates
that the application of SA significantly increases the activ-
ity of key antioxidant enzymes, which helps mitigate oxida-
tive damage caused by HTS. In rice plants, cultivated un-
der ideal temperature conditions, only minimal elevations
in the activities of antioxidant enzymes are observed. Con-
versely, when rice plants are exposed to high temperatures
and treated with SA, there is a significant enhancement in
the action of antioxidant enzymes (Ahmed et al. 2024).
Similarly, the pretreatment with SA increases the survival
rate of maize seedlings under high-temperature conditions.
This improvement is accompanied by enhanced accumula-
tion of osmolytes and activation of the antioxidant system,
demonstrating SA’s protective effects (Li et al. 2015).

Further studies illustrate SA’s role in stress mitigation
across various plant species. In Ulva prolifera, SA alleviates
the heat stress-induced upregulation of antioxidant-related
proteins and enzymes (Fan et al. 2017). In Digitalis tro-
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jana, pretreatment with SA improves tolerance to HTS by
increasing the activities of SOD and CAT in callus cultures
(Cingoz and Gurel 2016). In ornamental pepper seedlings,
treatment with SA significantly boosts the activity of CAT,
SOD, and POD, along with increasing the content of ascor-
bic acid (ASA) and glutathione (GSH) in seedlings exposed
to HTS (Zhang et al. 2020). Additionally, in bell pepper, SA
and epibrassinolide (EBR) treatments increased the activity
of various antioxidant enzymes, aiding in the scavenging
of ROS generated due to elevated temperatures (Preet et al.
2023). An elevation in CAT and SOD activity is also ob-
served in SA-treated tomato plants under heat stress (Jahan
et al. 2019). In potato plants, the activity of APX increases
in heat-stressed plants following foliar application of SA
(Li et al. 2019).

Quantitative studies further illustrate the antioxidative
benefits of SA. In pigeon pea genotypes at the seedling
stage, the antioxidative defense system shows a marked
increase in enzyme activity following SA treatment. CAT
activity shows an average 1.02-fold rise in heat-acclimated
plants, a 0.77-fold increase in those treated with 0.5mM
SA, and a 1-fold increase in those treated with 1mM SA.
Similarly, POX activity exhibits an average 1.30-fold in-
crease in heat-acclimated plants, a 1.24-fold increase in
those treated with 0.5mM SA, and a 1.37-fold increase in
those treated with 1mM SA (Kaur et al. 2019). The applica-
tion of SA emerges as a promising strategy for enhancing
plant resilience to high-temperature stress. By activating
antioxidant enzyme systems and increasing osmolyte ac-
cumulation, SA helps plants maintain cellular homeostasis
and mitigate oxidative damage. This highlights the poten-
tial of SA as a valuable tool in agricultural practices aimed
at improving crop tolerance to abiotic stresses.

Interaction of SAwith Osmolytes

In response to high temperatures, plants employ various
strategies, one of which involves the synthesis of low
molecular weight water-soluble compounds referred to as
compatible solutes. These include proline, proteins, glycine
betaine, carbohydrates and polyols. When plants experi-
ence heat stress, the accumulation of these osmolytes serves
several purposes: aiding in osmotic balance, elevating the
concentration of cell protoplasm to uphold membrane func-
tion and adjusting the antioxidant system to restore cellular
redox balance and overall homeostasis (Kaur and Asthir
2015). Proline accumulation in plants serves as a protective
mechanism against osmotic stress induced by high tem-
peratures. As a compatible solute, proline protects the cell
from the adverse effects of heat stress. Iqbal et al. (2014)
observed an elevation in proline content under HTS. This
elevation in proline level regulates osmotic balance, pre-

serves membrane integrity and detoxifies excessive reactive
oxygen species (ROS).

In rice, HTS led to a significant increase in proline lev-
els by 45.5% compared to control plants. This rise can
be attributed to increased proline synthesis and reduced
catabolism processes during heat exposure (Gautam et al.
2022). Similarly, Pareek et al. (2019) noted an elevation in
proline accumulation in chickpea during the initial stages of
heat exposure, suggesting that proline accumulation serves
as a mechanism to preserve RWC, thereby protecting plants
from damage and sustaining normal cellular hydration lev-
els. According to Khan et al. (2015), salicylic acid plays
a regulatory role in controlling the synthesis of osmolytes
and other metabolites, as well as in managing the nutri-
tional status of plants. In cucumber, Basirat and Mousavi
(2022) discovered that SA reduces dehydration losses by
triggering an antioxidant defense mechanism and boosting
the accumulation of proline.

Pirnajmedin et al. (2020) studied the impact of SA on the
induction of high-temperature tolerance in fescue genotypes
under field conditions. Their findings revealed that the foliar
application of SA resulted in a significant increase in pro-
line content compared to the control. According to Nazar
et al. (2011), methionine synthesized from homocysteine
through the sulfur (S) assimilation pathway activated by
SA plays a pivotal role in the production of GB. According
to Quan et al. (2022), the accumulation of glycine betaine
(GB) significantly mitigates the effects of high-temperature
stress in Brassica. GB not only alleviates the reduction in
photosynthesis and the excessive accumulation of ROS but
also activates stress-responsive genes under high-temper-
ature conditions. GB serves to stabilize photosynthesis in
plants experiencing heat stress, thereby promoting growth
even under challenging thermal conditions. Additionally, it
plays a crucial role in preventing photoinhibition by sta-
bilizing the structure of the oxygen-evolving center, par-
ticularly within photosystem II (PSII) (Brengi and Nasef
2023).

Khan et al. (2014) showed that SA enhances GB accu-
mulation and suppresses ethylene formation in mung bean,
resulting in improved photosynthesis and growth. SA-in-
duced elevations in osmolyte concentration may establish
an intracellular redox state that is favorable for optimal
metabolic and physiological activities during stressful con-
ditions (Dawood et al. 2020).

Influence of SA On the Synthesis of Heat
Shock Proteins During High Temperature
Stress

To endure high temperatures, plants activate heat-resis-
tant strategies, which involve altering organelles and cy-
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toskeleton arrangement, adjusting membrane flexibility and
boosting levels of antioxidant enzymes alongside gener-
ating protective molecules like antioxidants (Goud et al.
2022). The heat-shock response is a crucial mechanism
in plants that triggers the rapid production HSPs when
exposed to high temperature (Doyle et al. 2013). During
severe HS, many proteins within the chloroplast experience
denaturation. HSPs act as molecular chaperones, protect-
ing these proteins and preserving their structural integrity
and function (Goswami et al. 2021). HSPs consists of five
principal classes of proteins i.e. HSP100, HSP90, HSP70,
HSP60 and small HSPs (Zhao et al. 2018). The rapid ex-
pression of HSP genes is controlled by heat-shock factors
(HSFs), which are transcription factors that form trimers
in response to stress conditions, move into the cell nucleus
and initiate the transcription of HSPs (Jacob et al. 2017).
Vidya et al. (2018) noted that a majority of HSPs, such
as HSP28, HSP26.5 and HSP22, were activated during the
initial phases of HS. HSP27 is significantly induced as
a HSP in response to various stress conditions, particularly
HS (Das and Bhattacharya 2017). A heat shock protein,
‘CsHSP45.9’ enhanced tolerance to HS by activating the
antioxidant system (Kim et al. 2020). Yang et al. (2020)
conducted a study on the overexpression of sHSP17.6 and
its effect on mitigating the inhibited growth and develop-
ment caused by HS in Arabidopsis thaliana. Both control
and SA-treated grapevine leaves exhibited an increase in
HSP21 during HS. After stressed plants recover, the synthe-
sis of HSPs stops and they were degraded. However, under
control conditions, the levels of HSP21 decreased during
the recovery phase (Wang et al. 2010). SA heightened
the expression of hsp17, with higher expression observed
in the thermotolerant (C 306) wheat variety compared
to the thermosensitive (PBW 343) variety (Kumar et al.
2015). These proteins possess protein refolding capabili-
ties, thereby enhancing the thermotolerance of the plants.
After application exogenous SA (0.1mM) increase in pro-
duction of HSP70 and HSP17.6 in pea plants was observed
(Pan et al. 2006). Similarly, Rai et al. (2020) noted an
upregulated expression of heat shock transcription factor
(hsf) in Lablab purpureus under HS. This upregulation of
HSF might be due to activation of protein kinases after SA
application. These are further involved in the refolding and
transport of antioxidant proteins to the mitochondria.

Influence of SA On the Photosynthetic
Apparatus Under High Temperature Stress

It is well known that photosynthesis is extremely vulnera-
ble to elevated temperature. HS disrupts the delicate bal-
ance of cellular energy processes (Mathur et al. 2014).
It deactivates heat-sensitive proteins like rubisco activase

and downregulates essential chloroplast components. This
results in reduced photosynthetic efficiency, redox imbal-
ance and cell death (Li et al. 2018). High temperatures
primarily impact photochemical reactions within the thy-
lakoid lamellae and carbon metabolism within the stroma
of chloroplasts. Among the protein complexes within the
chloroplast thylakoid membrane, PSII stands out as par-
ticularly susceptible to HTS. Severe heat-induced damage
to PSII critically impairs photosynthetic electron transport
and ATP synthesis (Wang et al. 2018). High temperatures
led to a decrease in the maximal photochemical efficiency
(Fv/Fm) and caused damage to PSII in tobacco leaves (Yan-
hui et al. 2020). Similar outcomes were recorded by in
chickpea under HS (Jha et al. 2022). According to Zhou
et al. 2015, the decrease in the Fv/Fm value was noted due
to damage of D1 reaction-center protein of PS II under
HTS conditions. The decline in carotenoid and chlorophyll
content observed in Lablab purpureus plants under elevated
temperature can be linked to several factors. Firstly, osmotic
stress resulting from reduced RWC and limited CO2 avail-
ability may lead to the oxidation of chlorophyll and other
pigments. This oxidative stress can trigger the generation
of excess ROS within chloroplasts. Additionally, stomatal
closure induced by high temperatures further exacerbates
this process, contributing to the decrease in pigment con-
tent (Rai et al. 2017). Research indicates that SA primar-
ily acts to safeguard chloroplasts within the photosynthetic
system during periods of HS (Janda et al. 2014). SA main-
tain the stability of photosynthetic pigments and supports
the functioning of photosystems such as PSI and PSII. Ad-
ditionally, it ensures that plants can effectively carry out
carbon assimilation, enabling normal growth without dis-
ruption. Applying SA before exposure to high temperatures
mitigated the decline in photosynthetic capacity of the flag
leaves. Consequently, this pre-application ensured the sta-
bility of the photosynthetic system despite the presence of
HS (Fan et al. 2022). SA had a beneficial effect in main-
taining a high level of photosynthetic capacity in ornamen-
tal pepper seedlings when exposed to higher temperature
(Zhang et al. 2020). Applying SA to the foliage prior to HS
helped in alleviating oxidative damage in Solanum lycop-
ersicum. This was achieved by enhancing photosynthetic
function and increasing the activity of antioxidant system.
As a result, scavenging of ROS was increased, which safe-
guarded the photosynthetic apparatus and facilitated plant
survival in stressful conditions (Jahan et al. 2019). HS sig-
nificantly impairs the growth, physiological functions and
photosynthetic activity of alfalfa. Nevertheless, pretreating
alfalfa with exogenous SA notably improved all growth pa-
rameters, physiological processes and photosynthetic activ-
ity. This enhancement led to increased heat tolerance, with
particularly notable effects observed at a low concentration
of SA (0.25mM) (Wassie et al. 2020). Applying SA during
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HS resulted in elevated production of proline. This increase
in proline maintained osmotic balance of the plants, en-
abling them to absorb more water. As a result, functioning
of the photosynthetic machinery was improved. This en-
hanced PS II efficiency and activity of Rubisco, ultimately
increase in photosynthetic rate was observed (Khan et al.
2013; Waqas et al. 2021; Wang et al. 2010). When maize
plants treated with SA were subjected to HTS, they showed
fewer reductions in the number of lamellae per grana and
less noticeable alterations in the structure of their chloro-
plasts. These findings suggest that SA optimizes photosyn-
thetic carbon assimilation and activates the antioxidant sys-
tem. This treatment may mitigate the adverse effects of
photoinhibition in PSII and reduce structural damage to
chloroplasts (Li et al. 2023).

Fig. 2 The Influence of high temperature stress on plant reproductive systems and the protective role of salicylic acid

Role of SA in Protecting Plant Reproductive
Systems During High Temperature Stress

It has been observed that the reproductive stage of many
crops is particularly vulnerable and can only withstand
a narrow temperature range (Lohani et al. 2020). The eco-
nomic significance of cultivated plant species lies in the
success of their sexual phase, namely seed or fruit pro-
duction. When temperatures during flowering exceed the
species tolerance range, it adversely affects fruit and seed
set (Chaudhary et al. 2022). HTS has detrimental effects
on the reproductive structures. It may lead to abnormalities
in both male and female gametes (Resentini et al. 2023).
Sexual reproduction in flowering plants consists of various
stages, each differing in their susceptibility to HS (Fig. 2).

Plant sexual reproduction relies on the development of
viable pollen in anthers. The process of conversion of an-
thers to pollen grains is affected by severe stress conditions,
particularly during meiosis and the young microspore stage,
where even brief exposure can significantly reduce pollen
fertility. This is primarily due to disruptions in tapetum
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development and degradation, ultimately resulting in the
production of abnormal pollen (Ye et al. 2010; Niu et al.
2013).

Studies have indicated that the young microspore stage
is particularly sensitive to high temperatures (Draeger and
Moore 2017). HS during this phase leads to the microspores
degeneration and the enlargement of tapetal cells, ultimately
resulting in male sterility (Smith and Zhao 2016; Deng
et al. 2016). Elevated temperatures reduced pollen activity
as a result of improper development of PMC and premature
tapetum degradation. Consequently, this led to improper
fertilization and decrease grain number in panicles (Liu
et al. 2020). Consistent exposure to HS during the repro-
ductive phase leads to sterility in Cucumis sativus L. (Chen
et al. 2021). To investigate this phenomenon, researchers
conducted a cross-sectional analysis of anther development
under HTS. Their observations revealed abnormalities in
tapetum and microspore in stressed anthers. Furthermore,
they observed increase in pollen abortion and a significant
decline in pollen fertility. Increase in pollen viability and
seed-setting rates were reported after SA application in rice
plants during HS conditions. This positive effect was mainly
attributed to SA’s capacity to reduce excessive levels of
ROS in anthers, thereby preventing tapetum degradation in-
duced by HTS (Feng et al. 2018). Research in rice suggests
that SA plays a crucial role in preventing pollen abortion
and enhancing crop yield under HS conditions (Zhang et al.
2017). SA foliar spray significantly improved pollen viabil-
ity, resulting in a higher percentage of filled grains in rice
(Ahmed et al. 2024). Low concentration of SA improved
pollen viability under HS conditions by enhancing jasmonic
acid signaling in developing anthers (Jansma et al. 2022).
In Arabidopsis, SA alters the activities of apical cells, in-
dicating its involvement in the processes of flowering and
pollen tip growth. (Rong et al. 2016).

Effect of High Temperature Stress On the
Phenology and Yield of Crops and Its
Mitigation Trough SA Application

The duration from sowing to maturity plays a crucial role
in determining the overall yield of plants (Chauhan and
Williams 2018). Mungbean plants exhibit up to a 46% re-
duction in flower count and a 15–45% reduction in pod
set during high-temperature stress (HS) conditions (Sharma
et al. 2022). HS can lead to early phenological events, ac-
companied by shortened durations of both the flowering and
podding stages (Malaviarachchi et al. 2016). Temperatures
exceeding the critical threshold during rice growth stages
reduce both quality and grain yield (Jagadish et al. 2015).
Late sowing can lead to an overall reduction in phenolog-

ical development, affecting the duration of the vegetative
phase, flowering and podding stages (Maphosa et al. 2023).

Salicylic acid (SA) has been shown to promote flowering
and fruit set in plants, demonstrating its beneficial effects
not only under normal growth conditions but also in stress-
ful environments (Pacheco et al. 2013). Similar outcomes
have also been reported in alfalfa, where SA application im-
proved plant response to stress (Wassie et al. 2020). Foliar
application of SA stimulated flowering and increased pod
number in soybean plants (Sukumar et al. 2015). The appli-
cation of exogenous SA significantly enhanced wheat yield
when subjected to high-temperature conditions. In particu-
lar, pre-application of SA during the anthesis stage proved
most effective in mitigating the detrimental effects of HS on
wheat yield during the grain-filling stage (Fan et al. 2022).
Application of SA to wheat plants at a concentration of
150mM significantly increased both yield and yield-related
characteristics (Chouhan et al. 2017). Furthermore, acetyl
salicylic acid has been found to improve both vegetative
and reproductive growth, coupled with an increase in the
number of leaves, flowers and total yield in tomato plants
(Shinwari et al. 2018). These findings underscore the po-
tential of SA as a strategic application to improve plant
resilience and productivity under high-temperature stress
conditions.

Conclusion and Future Prospects

The latest studies highlights a significant loss in global crop
production due to HS. This condition negatively impacts the
growth, development and productivity of plants. Increased
temperatures disturb both the physiological and molecu-
lar processes within plants. SA is recognized as a powerful
therapeutic agent for plants adapting to various environmen-
tal conditions. SA controls the expression of HSP, initiates
the production of various antioxidants and osmoprotectants
and influences metabolic pathways and processes in plants.
Its effectiveness is underscored by numerous studies aimed
at understanding its mechanism of action and revealing its
diverse contributions to maintaining plant health. A vis-
ual representation (Fig. 3) elucidates the diverse functions
of SA in response to elevated temperature. SA maintains
membrane stability, photosynthetic machinery, enhance the
antioxidative system to alleviate stress, regulates osmolytes,
synthesizing various HSPs crucial for signaling throughout
the plant system. Together, these actions contribute to main-
taining chemical homeostasis in plant cells. Understand-
ing the precise mechanisms that mitigate high-temperature
stress is crucial and this remains a persistent challenge at
both physiological and molecular levels. Additionally, the
exact mechanisms and pathways for the actions of SA in
plants are not fully understood. To address this knowledge
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Fig. 3 The effects of high temperature on plants and its relief through the use of salicylic acid application

gap, comprehensive genomics and proteomics studies are
essential to identify the genes for SA regulation and pro-
teins expressed under stress conditions. Further research
is required to elucidate the interaction between phytohor-
mones and heat stress tolerance. This is vital for the ad-
vancement of genotypes with improved tolerance to high
temperatures.
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