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ABSTRACT 
 

Heat stress, a significant abiotic factor, adversely affects plant growth and productivity by disrupting 
various physiological and biochemical processes. Plants, being immobile, respond to 
environmental changes through alterations in gene expression, metabolism, and growth dynamics. 
Elevated temperatures, exceeding the threshold for heat tolerance, negatively influence critical 
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functions such as photosynthesis, respiration, water balance, and membrane stability. Root 
development is particularly sensitive to heat stress, resulting in reduced root mass and impaired 
water and nutrient uptake. Photosynthetic capacity diminishes due to decreased chlorophyll content 
and impaired photochemical reactions, leading to reduced biomass and yield. Heat stress impacts 
plant water status by disturbing hydraulic conductivity and increasing membrane permeability, 
leading to dehydration and a decline in water potential. This stress reduces membrane stability, 
resulting in electrolyte leakage and cellular damage. It also induces the production of reactive 
oxygen species (ROS), which requires the activation of antioxidant enzymes to minimize oxidative 
stress. Also, to maintain osmotic balance and enhance stress tolerance, plants accumulate 
osmolytes such as proline. Additionally, anatomical adaptations in leaves, stems, and roots, such 
as changes in stomatal density, xylem vessel size, and gas exchange patterns, highlight the plant's 
strategies to cope with heat stress. Understanding these varied responses is crucial for developing 
strategies to enhance crop resilience in the face of increasing global temperatures 
and climate change. 
 

 

Keywords: Heat stress; roots; photosynthesis; membrane; ROS; xylem vessels. 

 
1. INTRODUCTION 
 
Plants being immobile gets significantly affected 
by various abiotic environmental factors leading 
to a variety of responses, including alterations in 
biological processes such as gene expression 
and cell metabolism, as well as impacting overall 
growth and development [1]. These abiotic stress 
factors comprise of extreme temperature 
variations, drought, flooding, salinity, metal 
exposure, and nutrient deficiencies [2]. Each of 
these stresses causes different types of 
responses in plants [3]. Since the beginning of 
21st century, a noticeable rise in ambient 
temperatures has been recorded, with 
projections indicating a continued upward trend 
as a result of climate change [4]. An elevation in 
temperature that surpasses the threshold level 
by even one degree is classified as heat stress 
[5]. Each degree centigrade increases in average 
growing season temperature reduces crop yield 
by 17% [6]. Heat stress affects plant growth 
throughout all developmental stages, with the 
threshold for heat tolerance varying considerably 
at different growth phases. This stress negatively 
influences several physiological processes, 
including photosynthesis, respiration, water 
balance, and membrane stability [7]. Growth 
inhibition due to excessive heat occurs from its 
thermal impact on various physiological and 
developmental processes [8]. A noticeable 
hindrance in plant growth, initiated by a specific 
daily mean temperature, is termed as the 
threshold temperature, which varies depending 
on the plant species and the genotypes within 
each species [9]. A rise in temperature lead to 
dehydration of cells, resulting in diminished cell 
size and reduction in growth [10]. Thus, heat 
stress emerges as a critical abiotic factor that 

disrupts plant growth and development by 
impairing physiological and biochemical 
processes, ultimately posing a significant threat 
to global agricultural productivity and food 
security. A detailed outline showing effects of 
heat stress on various physiological and 
biochemical parameters is shown in Fig. 1. 
  

2. IMPACT OF HEAT STRESS ON ROOT 
ARCHITECTURE AND FUNCTION 

 
In general, root growth tends to be more 
sensitive to heat stress as compared to shoot 
growth due to the fact that roots typically have a 
lower optimal temperature for growth. As a result, 
a reduction in root mass may lead to a reduction 
in shoot mass [11]. Heat stress impacts root 
growth in plants by limiting root elongation, 
reducing biomass allocation, altering root 
architecture, and impairing water and nutrient 
absorption. It disrupts cellular homeostasis, 
damages root meristematic tissues, and affects 
hormone signalling pathways critical for root 
development [12]. A rise in temperature would 
restrict root development and modify the 
architecture of the root system, ultimately 
diminishing the of root: shoot ratio. Numerous 
studies have verified that heat stress has a 
detrimental effect on both root architecture and 
root mass and these alterations in root structure 
also adversely impact the absorption of water 
and nutrients by the plants [13-15]. Under heat 
stress, water loss is exacerbated due to 
increased transpiration, while reduced root 
elongation and impaired membrane stability limit 
the plant's ability to absorb water effectively [16]. 
The decreased functionality of nutrient uptake 
proteins and the inhibition of carbohydrate 
transport from shoots to roots further hinder 
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Fig. 1. Effects of heat stress on various physio-biochemical aspects of plants 
 
nutrient absorption and assimilation [17]. Also, 
heat stress damages root meristematic cells and 
disrupts ion homeostasis, reducing the uptake of 
essential nutrients like nitrogen, potassium, and 
phosphorus. These physiological and 
biochemical disruptions culminate in diminished 
fresh and dry weight of plants and hamper 
overall plant growth, including shoot 
development [18]. 
 

3. HEAT STRESS-INDUCED 
ALTERATIONS IN PHOTOSYNTHETIC 
CAPACITY AND EFFICIENCY  

 

Photosynthesis, a crucial process in green plants 
[19], becomes particularly vulnerable during 
stressful conditions, especially affecting the 
photochemical reactions occurring in the 
thylakoid membranes within the chloroplast 
stroma [20]. Elevated temperatures impact the 
photosynthetic process by altering the rate of 
chemical reactions and changing the structural 
organization. High temperatures can denature or 
deactivate critical enzymes involved in the Calvin 
cycle, such as Rubisco, reducing the efficiency of 
carbon fixation [21]. Additionally, elevated 
temperatures impair the thylakoid membrane's 
structure, where the light-dependent reactions of 
photosynthesis occur. This leads to a reduction in 
the photosynthetic electron transport chain's 
efficiency, ultimately decreasing the production of 
ATP and NADPH required for carbon assimilation 

[22] (Fig. 2). High temperatures can cause both 
reversible and irreversible changes in the 
physiochemical properties and functional 
structure of the thylakoid membrane [23]. In 
plants, exposure to climatic stress typically leads 
to a decrease in chlorophyll concentrations and a 
reduction in the photochemical reactions of 
thylakoid proteins. This decrease in chlorophyll 
pigments directly impacts the photosynthetic 
activity of crops [24]. Heat stress can destabilize 
the thylakoid membrane structure, causing 
disorganization of these protein complexes, 
which are crucial for capturing light energy and 
facilitating electron transfer during 
photosynthesis [25]. 

 
Temperature fluctuations have been reported to 
significantly influence photosynthesis in crops, 
primarily due to the diminished presence of 
chlorophyll [24]. This indicates that changes in 
temperature can directly affect the plant's ability 
to photosynthesize efficiently, which is crucial for 
its growth and development [19]. The chlorophyll 
levels in plants depend on a delicate equilibrium 
between synthesis and degradation. When 
subjected to heat stress, this equilibrium is 
disrupted, resulting in reduced chlorophyll 
concentration in the plants [21]. Heat stress 
induces leaf senescence by disrupting 
chloroplasts and causing damage to chlorophyll 
through both direct and indirect mechanisms, 
including photo-oxidation. These processes 
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Fig. 2. Representation of the effects of heat stress on chloroplast structure and function 
 
significantly inhibit the photosynthetic capacity of 
the plant, leading to a reduction in biomass and 
seed yield [26]. Heat stress reduces 
photosynthetic capacity by impairing 
photosystems, degrading chlorophyll, and 
disrupting enzymatic processes in the Calvin 
cycle. This leads to reduced energy production 
and carbon fixation, causing visible effects on 
leaves, such as chlorosis, wilting, and a decline 
in growth [27]. 
 

4. IMPACT OF HEAT STRESS ON PLANT 
WATER STATUS AND HYDRATION 
DYNAMICS 

 
The plant water status is often regarded as the 
most critical variable under changing ambient 
temperatures [28]. Under heat stress, hydraulic 
conductivity tends to increase, leading to 
enhanced aquaporin activity [29]. This makes the 
membrane more permeable, facilitating greater 
water flow through its pores [30]. However, this 
heightened membrane permeability can have 
adverse effects, such as dehydration of flowers 
and grains [31]. This dehydration occurs because 
the increased permeability disrupts the gradient 
that drives water flow into flowers or grains, 
especially under heat stress conditions [32]. 
Typically, during the daytime, increased 
transpiration rates and higher stomatal 
conductance lead to water deficiency in plants, 
resulting in reductions in water potential. This 
water deficit can perturb various physiological 
processes within the plant [33]. An increase in 
leaf temperature leads to a decrease in water 
potential and relative water content in leaves, 
ultimately resulting in reduced photosynthetic 
productivity [34]. In field conditions, the crucial 
physiological indicator is leaf water potential, 
which is affected by both soil water status and 
the demand for evaporation. Water loss occurs 

more frequently during daylight hours compared 
to nighttime because higher stomatal 
conductance followed by increased transpiration 
lowers the water potential [35]. Thus, heat stress 
negatively impacts plant water status by 
increasing transpiration rates and reducing water 
uptake which leads to cellular dehydration and 
disruption of metabolic activities in tissues [8]. 
 

5. IMPACT OF HEAT STRESS ON 
MEMBRANE STABILITY AND 
ELECTROLYTE LEAKAGE 

 
Among all components of a plant cell, plasma 
membranes are considered the most heat-
sensitive, as they are primary sites for injury [36]. 
When plants experience heat injury, the 
membranes of sensitive plants undergo a phase 
transition from a solid-gel structure to a more 
flexible liquid-crystalline structure [18]. This 
transition can occur due to the denaturation of 
proteins or an increase in unsaturated fatty acids, 
resulting in increased fluidity of the membrane 
[37]. Under stress conditions, the extent of injury 
can be assessed by measuring the loss of 
membrane integrity, which is reflected in the 
leakage of organic and inorganic ions from the 
cell [38]. Electrolytic leakage, a measure of 
membrane stability, is influenced by various 
factors including plant or tissue age, sampling 
organ, developmental stage, growing season, 
and plant species [39]. Membrane stability is 
typically higher in mature tissues compared to 
younger ones, and different plant species exhibit 
varying resistance, with some, like desert or 
heat-tolerant species, showing better tolerance to 
heat-induced membrane damage [40]. The 
membrane stability index (MSI) is regarded as a 
crucial tool for assessing the heat tolerance 
potential of a specific genotype [41]. This is 
because membrane damage tends to escalate 
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with higher stress levels, making MSI an effective 
indicator of heat tolerance in plants [42]. Heat-
induced electrolyte leakage and reduced 
membrane stability index and RWC has been 
reported in various crops including cowpea [43], 
barley [44], sorghum [45], potato and cotton [46], 
mustard [47], soybean [48], rice [27,31], tomato 
[49] , mungbean [50], and wheat [51]. 
 

6. IMPACT OF HEAT STRESS ON YIELD 
ATTRIBUTES 

 
Abiotic stress occurring later in the reproductive 
stage can lead to source limitation for seed yield 
by triggering leaf shedding and/or accelerating 
maturity [52]. However, yield compensation can 
occur through both increased branching and 
enhanced efficiency of pod retention [53].  
Flowering represents the most sensitive stage to 
temperature stress damage, likely attributable to 
its vulnerability during pollen development, 
anthesis, and fertilization, ultimately resulting in 
reduced crop yield [39]. An increase in 
temperature have been noted to stimulate plant 
development while concurrently inducing flower 
abortion, leading to significant yield losses [54]. 
Temperatures exceeding 27°C led to a decrease 
in the number of siliquae on the main shoot and 
the number of seeds per siliqua, potentially 
attributed to increased floral sterility [55]. 
Similarly, floral sterility in canola was observed, 
along with the development of flowers into 
seedless parthenocarpic fruits and/or flower 
abortion under heat [56]. Terminal heat stress in 
mustard during the flowering and siliqua 
formation stages led to a significant decrease in 
the number of siliquae per plant, primarily due to 
increased instances of flower and siliqua 
abscission [57].  
 

7. IMPACT OF HEAT STRESS ON 
OXIDATIVE STRESS AND 
ANTIOXIDANT ENZYME ACTIVITY  

 
Heat stress has the potential to disrupt enzymes 
and metabolic pathways, leading to the buildup 
of harmful reactive oxygen species, including 
singlet oxygen (1O2), superoxide radical (O2

•−), 
hydrogen peroxide (H2O2), and hydroxyl radical 
(OH•), which are associated with oxidative stress 
[58]. While the reaction centres of photosystem I 
and photosystem II in chloroplasts are the 
primary sites of ROS production, these are also 
generated in peroxisomes and mitochondria [59]. 
Hydroxyl radicals have the ability to interact with 
various biomolecules including pigments, 

proteins, lipids, and DNA, affecting nearly all 
components of cells [60]. Similarly, singlet 
oxygen has the capability to directly oxidize 
proteins, polyunsaturated fatty acids, and DNA 
[61]. Under stress conditions, the generation of 
ROS surpasses the ability of the antioxidant 
system to neutralize them, leading to significant 
cellular harm and mortality [62]. In these 
instances, external protective agents and genetic 
modification of defensive genes can enhance the 
defense mechanism, a phenomenon also 
observed in oxidative damage caused by heat 
stress [63]. Plants have developed several 
mechanisms to tolerate heat stress, and one 
such mechanism involves reducing oxidative 
stress through the production of antioxidants and 
increasing total antioxidant capacity [64]. 
Superoxide dismutase (SOD) is typically 
regarded as the primary defense mechanism 
against oxidative stress [65]. This enzyme 
facilitates the conversion of O2

•− into either 
molecular oxygen (O2) or H2O2 [66]. H2O2 is 
further broken down by peroxidase (POX) and 
catalase (CAT). While both enzymes are involved 
in degrading H2O2, CAT primarily focuses on 
neutralizing the excess ROS during stressful 
conditions [67]. In contrast, POX plays a more 
nuanced role in finely modulating ROS signalling 
[60]. The plant's ability to combat oxidative stress 
is partially dependent on the induction of SOD 
activity, which in turn leads to the upregulation of 
other downstream antioxidative enzymes [68]. 
CAT and SOD are the most active enzymes in 
response to environmental stressful conditions 
[65] (Fig. 3). 
 

8. IMPACT OF HEAT STRESS ON 
OSMOLYTE ACCUMULATION 

 

Heat stress trigger significant modifications in 
plant biochemistry and metabolism [69]. In order 
to enhance plant resilience against abiotic 
stresses and uphold a high RWC, plants may 
accumulate various low molecular mass 
compounds known collectively as compatible 
solutes, including proline [70]. These solutes 
serve multiple protective roles within heat-
stressed cells [71]. Proline, classified as a non-
essential amino acid due to its ability to be 
synthesized by plants, possesses an imino group 
(–NH) instead of the typical amino group (–NH2) 
[72]. It is known as one of the most extensively 
studied thermoprotectants observed in response 
to stress and serves as an osmolyte for osmotic 
adjustment [73]. Additionally, proline aids in 
stabilizing various structures, including proteins 
and membranes, within plant cells under 
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Fig. 3. Effects of heat stress on oxidative stress and antioxidant defense mechanism 
 
stressful conditions across multiple crop species 
[74]. The most significant accumulation of proline 
happens in late sown crops, primarily due to an 
increase in γ-glutamyl kinase activity and a 
decline in proline oxidase activity [75]. This 
increase in proline levels under heat stress is 
linked to the regulation of cellular osmotic 
balance [63]. Additionally, the exogenous 
application of biostimulants can trigger 
physiological activities and activate osmotic 
adjustment compounds in plants, including 
proline, total soluble sugars, and amino acids 
[76]. Plants employ a rapid proline accumulation 
strategy as a means to mitigate water loss during 
adverse conditions, thereby aiding in the 
maintenance of cellular water equilibrium [77]. 
 

9. IMPACT OF HEAT STRESS ON 
WATER LOSS AND GAS EXCHANGE 
DYNAMICS 

 
An overall strategy for coping with heat stress 
involves minimizing cell size, expanding the 
diameter of xylem vessels, boosting stomatal 
density to enhance water transportation, and 
decreasing transpiration [78]. Stomata, which are 
small pores found in the epidermis of plants, are 
flanked by two guard cells that regulate the 
opening and closing of the pore to manage the 
exchange of carbon dioxide and water vapor on 
the leaf surface [79]. Typically, plants 
experiencing heat stress tend to have increased 

stomatal density and smaller stomata, aiming to 
enhance their efficiency in resisting heat [80]. 
Various studies demonstrate that elevated 
temperatures lead to an increase in stomatal 
density, which helps alleviate cell and tissue 
damage caused by heat stress. Additionally, 
there's a concurrent occurrence of stomatal 
opening under heat stress, indicating a dynamic 
regulatory mechanism to cope with elevated 
temperatures [81-83]. 
 
Stomata play a pivotal role in facilitating the 
exchange of gases between the atmosphere and 
the interior of the leaf [79]. Consequently, the 
behaviour of stomata is of utmost importance for 
the uptake of carbon dioxide to fulfil 
photosynthetic requirements, as well as for 
regulating leaf water loss, which directly 
influences processes such as evaporative 
cooling, nutrient uptake, and the overall water 
status of the plant [84]. This highlights the critical 
role that stomatal behaviour plays in the 
physiological processes essential for plant 
growth and survival [85-87]. In leaf stress 
physiology, a notable area where heat and 
drought present conflicting signals is in stomatal 
regulation [88]. Drought conditions prompt 
stomatal closure to minimize transpiration and 
preserve water, while heat induces stomatal 
opening to facilitate increased leaf cooling 
[89,90]. Transpiration is a key component of a 
plant's cooling system. Just like sweating in 
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animals, transpiration helps dissipate heat from 
the plant's surface [91]. As water evaporates 
from the leaves, it absorbs heat energy, which 
cools the plant which is particularly important 
during hot weather when temperatures rise 
above the plant's ideal range [92].  
 
Stomatal properties, including stomatal size, pore 
area, and stomatal density, play a crucial role in 
determining stomatal conductance (gs) in leaves 
[93]. Stomatal conductance reflects the leaf's 
capacity for exchanging water vapor with the 
atmosphere and is influenced by the number of 
stomata per unit leaf area and the size of the 
pore opening [84]. Consequently, changes in leaf 
morphology and functional responses to external 
weather conditions can affect stomatal 
conductance, consequently impacting 
photosynthesis and overall crop performance 
[94]. Higher stomatal conductance values at 
elevated temperatures are advantageous for 
plant performance because they alleviate 
diffusional limitations on CO2 entering the leaf. 
This increase in intercellular CO2 concentration 
helps mitigate the adverse effects of enhanced 
photorespiration under warmer leaf temperatures 
[95].   
 
Moreover, higher stomatal conductance 
facilitates increased transpiration and 
evaporative cooling, thereby helping to maintain 
leaf temperature closer to the optimal level for 
photosynthesis (Topt), consequently reducing 
photorespiratory processes [96]. However, the 
elevated water loss resulting from higher gs can 
compromise the water status of the plant which, 
depending on the severity of water stress, may 
adversely affect plant performance and growth. 
Variations in stomatal anatomical features or 
regulation of stomatal pore width can impact gas 
exchange in various ways and may be influenced 
by genetic factors and growth conditions, 
including evaporative demand [97,98] and 
carbon dioxide levels [99,100].  
 

10. IMPACT OF HEAT STRESS ON PLANT 
ANATOMICAL STRUCTURES 

 
Heat stress leads to notable changes in the 
anatomy of leaves, stems, and roots [101-103]. 
In response to adverse environmental conditions, 
plants undergo diverse cellular and metabolic 
changes, potentially enhancing their survival 
capacity under stress [104]. Previous research 
has demonstrated that a rise in temperature lead 
to an increase in both outside-xylem hydraulic 
conductance and mesophyll conductance, 

thereby enhancing gas-phase conductance 
[105]. This augmentation in conductance can 
help maintain turgor pressure within guard cells 
and consequently result in higher transpiration 
rates [106]. A rise in hydraulic demand could lead 
to either larger channels, increased density of 
channels, or greater xylem size within the stem's 
cross-sectional area. This adaptive response 
allows them to enhance their capacity for 
transporting water, thereby better meeting the 
heightened demand for water caused by the 
elevated temperatures [107]. In seasonal 
climates, temperature is a crucial factor 
influencing the vascular development of woody 
plants [108]. An earlier increase in temperature 
can stimulate cambial activity, leading to an 
earlier onset of the growth season. In woody 
plants, elevated temperatures can either 
increase, or decrease the diameter of tracheid 
[109]. The response is species-specific. The 
increased diameter of xylem vessels or tracheid 
enhances the efficiency of water transport within 
the plant [110]. In herbaceous plants like 
potatoes, elevated temperatures may result in 
enlarged and deformed vessel cells, as well as 
improper phloem division. These alterations can 
have adverse effects on crop yields, as the 
enlargement of xylem negatively impacts the 
phloem by exerting mechanical pressure on its 
cells, leading to a reduction in sugar 
translocation [111]. Increase in the size of 
epidermal cells and the pith area was observed 
in mungbean genotype under heat stress [112]. 
Reduction in cell size serve to minimize 
excessive water loss, resulting in an increase in 
stomatal density and enlarged xylem vessels in 
plants experiencing heat stress [113].  
 

11. CONCLUSION 
 
Heat stress negatively affects various 
physiological, biochemical, and anatomical 
processes in plants, leading to detrimental 
impacts on growth, development, and yield. The 
disruption of root structure, photosynthetic 
efficiency, water status, membrane stability, and 
enzyme activity under elevated temperatures 
shows the complexity of plant responses to 
thermal stress. Additionally, heat-induced 
alterations in stomatal behaviour, gas exchange, 
and osmolyte accumulation further complicate 
the plant's ability to maintain optimal growth 
under such conditions. The adverse effects on 
yield attributes underscore the vulnerability of 
crops to rising temperatures, especially during 
critical reproductive stages. Understanding these 
mechanisms is crucial for developing strategies 
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to enhance plant resilience, such as breeding 
heat-tolerant varieties or employing agronomic 
practices that mitigate the impact of heat stress. 
These insights contribute to addressing the 
broader challenge of sustaining agricultural 
productivity in the face of global climate change.  
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